This function
takes the specific data frames
.TCGA_GTEX_RNAseq_sampletype_subset
and sample_type
that are
generated inside .plot_Corr_RNAseq_TCGA_GTEX()
calculates the correlation coefficiency between each EIF4F gene
and the rest of cellular mRNAs with .correlation_coefficient()
combines the correlation coefficiency data from EIF4E, EIF4A1, EIF4G1, and EIF4EBP1
selects positive correlating genes with .is_significant_poscor()
and
negative correlating genes with .is_significant_negcor()
summarizes the total number of posCORs or negCORs identified for
each EIF4F gene with .summarize_counts()
It should not be used directly, only inside .plot_Corr_RNAseq_TCGA_GTEX()
function.
.EIF_correlation(df, sample_type)
the data frame .TCGA_GTEX_RNAseq_sampletype_subset
generated
inside .plot_Corr_RNAseq_TCGA_GTEX()
sample types, either all.tumor.type
or
c("Normal Tissue")
generated inside .plot_Corr_RNAseq_TCGA_GTEX()
a list output with four elements:
cor_value_combined
for the heatmap
CORs_summary_tbl
for bargraph
posCOR_EIF4F
for Venn plots
negCOR_EIF4F
for Venn plots
Other helper function to identify correlating genes for EIF4F genes:
.correlation_coefficient()
,
.is_significant_negcor()
,
.is_significant_poscor()
,
.summarize_counts()
if (FALSE) {
.EIF_correlation(
df = .TCGA_GTEX_RNAseq_sampletype_subset,
sample_type = all.tumor.type
)
}